Increasing Translation Invariant Morphological Forecasting Models for Stock Market Prediction
نویسنده
چکیده
Statistical models have been widely used for the purpose of forecasting. However, it has some limitations regarding its performance, which prevents an automatic forecasting system development. In order to overcome such limitations, Artificial Neural Networks (ANNs), Evolutionary Algorithms (EAs) and Fuzzy Systems (FSs) based approaches have been proposed for nonlinear time series modeling. However, a dilemma arises from all these models regarding financial time series, which follow a Random Walk (RW) model, where the forecast of such time series exhibits a characteristic one step shift regarding original data. In this way, this work presents a new approach, referred to as Increasing Translation Invariant Morphological Forecasting (ITIMF) model, to overcome the RW dilemma for financial time series forecasting, which performs an evolutionary search for the minimum dimension to determining the characteristic phase space that generates the financial time series phenomenon. It is inspired on Takens Theorem and consists of an intelligent hybrid model composed of a Modular Morphological Neural Network (MMNN) combined with a Modified Genetic Algorithm (MGA), which searches for the particular time lags capable of a fine tuned characterization of the time series and estimates the initial (sub-optimal) parameters (weights, architecture and number of modules) of the MMNN. Each individual of the MGA population is trained by the Back Propagation (BP) algorithm to further improve the MMNN parameters supplied by the MGA. After adjusting the model, it performs a behavioral statistical test and a phase fix procedure to adjust time phase distortions observed in financial time series. Furthermore, an experimental analysis is conducted with the proposed model using ten real world financial time series. Five well-known performance metrics and an evaluation function are used to assess the performance of the proposed model and the obtained results are compared to classical models presented in literature. DOI: 10.4018/978-1-61520-629-2.ch010
منابع مشابه
Nonlinear Model Improves Stock Return Out of Sample Forecasting (Case Study: United State Stock Market)
Improving out-of-sample forecasting is one of the main issues in financial research. Previous studies have achieved this objective by increasing the number of input variables or changing the kind of input variables. Changing the forecasting model is another possible approach to improve out-of-sample forecasting. Most researches have focused on linear models, while few have studied nonlinear mod...
متن کاملForecasting Stock Price using Hybrid Model based on Wavelet Transform in Tehran and New York Stock Market
Forecasting financial markets is an important issue in finance area and research studies. On one hand, the importance of prediction, and on the other hand, its complexity, have led to huge number of researches which have proposed many forecasting methods in this area. In this study, we propose a hybrid model including Wavelet Transform, ARMA-GARCH and Artificial Neural Network (ANN) for single-...
متن کاملStock Market Modeling Using Artificial Neural Network and Comparison with Classical Linear Models
Stock market plays an important role in the world economy. Stock market customers are interested in predicting the stock market general index price, since their income depends on this financial factor; Therefore, a reliable forecast in stock market can be extremely profitable for stockholders. Stock market prediction for financial markets has been one of the main challenges in forecasting finan...
متن کاملForecasting Stock Market Using Wavelet Transforms and Neural Networks: An integrated system based on Fuzzy Genetic algorithm (Case study of price index of Tehran Stock Exchange)
The jamor purpose of the present research is to predict the total stock market index of Tehran Stock Exchange, using a combined method of Wavelet transforms, Fuzzy genetics, and neural network in order to predict the active participations of finance market as well as macro decision makers.To do so, first the prediction was made by neural network, then a series of price index was decomposed by w...
متن کاملForecasting Stock Market Using Wavelet Transforms and Neural Networks and ARIMA (Case study of price index of Tehran Stock Exchange)
The goal of this research is to predict total stock market index of Tehran Stock Exchange, using the compound method of ARIMA and neural network in order for the active participations of finance market as well as macro decision makers to be able to predict trend of the market. First, the series of price index was decomposed by wavelet transform, then the smooth's series predicted by using...
متن کامل